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ABSTRACT

Quantum computers in the current noisy intermediate-scale quan-

tum (NISQ) era face two major limitations - size and error vulner-

ability. Although quantum error correction (QEC) methods exist,

they are not applicable at the current size of computers, requiring

thousands of qubits, while NISQ systems have nearly one hun-

dred at most. One common approach to improve reliability is to

adjust the compilation process to create a more reliable final circuit,

where the two most critical compilation decisions are the qubit

allocation and qubit routing problems. We focus on solving the

qubit allocation problem and identifying initial layouts that result

in a reduction of error. To identify these layouts, we combine re-

inforcement learning with a graph neural network (GNN)-based

Q-network to process the mesh topology of the quantum computer,

known as the backend, and make mapping decisions, creating a

Graph Neural Network Assisted Quantum Compilation (GNAQC)

strategy. We train the architecture using a set of four backends

and six circuits and find that GNAQC improves output fidelity by

roughly 12.7% over pre-existing allocation methods.
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1 INTRODUCTION

Modern quantum computers are classified as noisy intermediate-

scale quantum (NISQ) devices. These NISQ devices are named as

such due to their limitations on both the number of qubits (or

quantum bits) available and the reliability of these qubits and their

operations. Most NISQ devices contain from ten to one hundred

noisy qubits, though many systems are smaller on the smaller end

of this range, containing only 5-32 qubits. Due to the relatively

high error rates in quantum computers, many computations are

unlikely to complete without some error. Researchers have put

forth great effort to both make the algorithms resilient and reduce

the vulnerability of the physical machines.

Most approaches increase the reliability of quantum circuits dur-

ing execution rather than completely removing errors. It is common

to modify the circuit during compilation to choose more reliable

configurations when applying the circuit to a physical backend.

Using different qubits, physical connections, and operations, can

significantly impact the outcome of the circuit, as each configura-

tion may exhibit a very different error profile. These error rates

can vary due to different environmental conditions. Since there

are many possibilities when applying a circuit to a backend, it is

computationally difficult to identify the best possible configura-

tion. However, many pursuits have found success with a variety of

methods [1, 4ś6].

Our work aims to improve upon existing qubit allocation ap-

proaches, as our investigation shows there are considerable per-

formance improvements to be made. To solve the qubit allocation

problem, we incorporate graph neural networks (GNNs) to aid in

processing the inherent graph representation of the superconduct-

ing quantum backend, creating a Graph Neural Network Assisted

Compilation strategy (GNAQC). We choose to use GNNs due to

their intrinsic graph processing capabilities. We combine this GNN

processing of the backend with feedforward networks for process-

ing input circuits to create a total system for providing suggested

layouts as solutions to the qubit allocation problem. We implement

GNAQC using Qiskit and TensorFlow and evaluate its performance

on two different IBM backend configurations and six different quan-

tum circuits. We find that GNAQC generally outperforms the other

layout methods with some variation across the backends and cir-

cuits, increasing relative fidelity by approximately 12.7%. We also

find that GNAQC is more consistent at choosing better layouts,

providing a more reliable allocation method.
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Figure 1: Fidelity of Qiskit’s four qubit allocationmethods on

the 3-to-7-qubit Quantum Phase Estimation (QPE) algorithm

after execution on 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖.

Our contributions can be summarized as follows:

• We demonstrate the limitations of existing layout methods.

• We provide GNAQC, a new solution to the qubit allocation

problem built on GNNs with feedforward networks.

• We test GNAQC on two physical backends of 7 and 27 qubits

using six different benchmarks, finding that GNAQC can

consistently provide better or comparable initial layouts to

pre-existing methods.

• We demonstrate that GNAQC reduces the error of quantum

circuits by providing more reliable layouts, yielding a 12.7%

relative increase in fidelity.

2 MOTIVATION

We utilize IBM’s Qiskit API [3] to investigate the current perfor-

mance of qubit allocation methods. Qiskit natively contains four

different allocation methods: trivial, dense, noise-adaptive [6], and

sabre [5]. The four methods address the mapping problem using

very different approaches. Specifically, the trivial layout simply

maps the virtual qubits (𝑞1, 𝑞2 . . . 𝑞𝑛), in order, to the physical qubits

(0, 1 . . . 𝑁 ). The dense layout identifies highly connected sub-graphs

of the mesh and places qubits in these areas. The noise-adaptive

layout is the first to rely on the most recent backend configura-

tion data, aiming to utilize the most reliable two-qubit connections

available. The sabre method utilizes an iterative process to fully

route the circuit to find the final layout, then reversing the circuit

using the previous final layout as a proposed initial layout. This

process is repeated to minimize the number of required operations.

We tested the four layout methods on IBM’s 7-qubit 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖

backend using 3-qubit to 7-qubit quantum phase estimation (QPE)

circuits. We only test up to a maximum of seven qubits as access

to larger machines is limited. To evaluate their effects, we first

run a trial of each circuit using Qiskit’s simulator with no error

involved to attain a flawless theoretical outcome that we use as

the ground truth for every circuit. While the measurements of the

qubits are probabilistic in nature, we execute all trials with 10000

shots to minimize the random influence. We then execute the six

test circuits on the 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖 backend using each layout method

during compilation, again using 10000 shots. All other compilation

Figure 2: Fidelity of 7-qubit QPE when compiling with

Qiskit’s four allocation methods across one month of back-

end configurations for 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖.

settings were kept default, including the routing methods. Next, we

compared the resulting output distribution with the ground truth

distribution by computing the fidelity between them. The fidelity

acts as a similarity metric between the ground-truth state and the

real output state. A higher fidelity (bound [0,1]) indicates a higher

similarity between states.

For ease of computing fidelity 𝐹 , we rely on theHellinger distance

formula described below:

𝐹 =

1
√
2

√

√

√ 𝑁
∑︁

𝑖=1

(
√︃

𝑝𝐺𝑇𝑖 −
√︃

𝑝𝑇𝑖 )2 (1)

Here, 𝑁 is the total number of observed outputs, 𝑝𝐺𝑇𝑖 is the

probability of output 𝑖 for the ground truth distribution, and 𝑝𝑇𝑖
is the probability of output 𝑖 for the test distribution. The results

of these trials are shown in Fig. 1. In order to provide a metric

for comparison, we decided to execute and evaluate the error of

every possible layout and examine the effects. Note that this is only

feasible as we are working with a small number of qubits, as the

total number of layouts grows extremely quickly with an increase

in qubits. We display the exact maximum fidelity achieved as 𝑏𝑒𝑠𝑡

in Fig. 1. As shown, we find that no method is consistently close

to optimal. When looking at all 5 circuit sizes, we see situations

where the trivial, noise-adaptive, and sabre methods are the best of

the four options.

To provide more insight into the differences between layout

methods, we evaluated every layout on one month of daily cali-

bration data for 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖 , as shown in Fig. 2. This allows us

to see how frequently each allocation method performs best or

worst. As expected, the best allocation method is frequently either

the noise-adaptive or sabre layout methods. However, the accu-

racy improvements are inconsistent, and we frequently see changes

between which is best over time. Occasionally, they are even outper-

formed by the dense or trivial layouts. In total, these experiments

demonstrate two main points: 1) the choice of initial layout can

have a considerable impact on circuit fidelity, and 2) existing meth-

ods are inconsistent at choosing effective layouts. There is room
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Figure 3: High-level architecture of the GNAQC Q-network.

for improvement when selecting layouts to reduce vulnerability to

error.

3 ARCHITECTURE AND DATA
REPRESENTATION

To improve the performance of current layout methods, we look to

use graph neural networks as the quantum backends are naturally

represented in a graph form. We combine GNNs with additional

feedforward layers to predict optimal layouts given the backend

error properties and an input circuit. The following subsections

discuss our network architecture in detail, including two main ar-

eas: the backend graph input representation and processing and

the circuit input representation and processing. Details of the cur-

rent state vector and output actions are found in Section 4. The

overall architecture is shown in Fig. 3. The dense unit in the circuit

processing region contain two dense layers of 𝑁 ∗ 𝐹 nodes where 𝐹

is the number of node features. Similarly, the GNN layers are each

composed on 𝑁 2 nodes. The dense layer for processing the input

state is composed of 𝑁 nodes. The dense section is composed of

two layers of 𝑁 2 + 𝑁 ∗ (𝐹 + 1) and 𝑁 2 nodes respectively, giving

our total 𝑁 2 outputs for all possible placement actions.

3.1 Backend Representation and Processing

To prepare the backend for the GNN layers, we must construct both

a node and edge matrix (which replaces the adjacency matrix in

standard GNN). For the node matrix𝑋 , we collect several properties

from each node and arrange the matrix where each row holds the

properties of an individual node. The total set of properties that we

collect is found in Table 1, totaling 14 different error rates and gate

lengths. The final size of the node matrix is thus 𝑁 × 14, where 𝑁 is

the total number of physical qubits in the backend. We access these

properties using Qiskit’s IBMQ provider API. The set of single-

qubit gate data we collect varies depending on the basis set of gates,

though all of the backends we test contain the same basis set. We

then normalize the matrix by row to accelerate convergence.

The edge matrix 𝐸 takes the same form as a weighted adjacency

matrix, where 𝐸𝑖, 𝑗 equals the CNOT error between qubit 𝑖 and qubit

Table 1: List of all node features collected from physical

backends.

Feature Description

𝐸𝐼𝐷 Identity gate error

𝐿𝐼𝐷 Identity gate length

𝐸𝑅𝑍 RZ gate error

𝐿𝑅𝑍 RZ gate length

𝐸𝑆𝑋 SX gate error

𝐿𝑆𝑋 SX gate length

𝐸𝑋 X gate error

𝐿𝑋 X gate length

𝑇1 Relaxation time

𝑇2 Dephasing time

𝐹 Qubit Frequency

𝐸𝑀 Measurement error

𝑃01 Probability measure 0 as 1

𝑃10 Probability measure 1 as 0

𝑗 . Although it is not required that the CNOT error be symmetrical on

all hardware implementations, we found that, for the backends we

tested, the error rates were always symmetrical. We then normalize

the edge matrix in a doubly-stochastic manner, following the design

of [2] to ensure that both the rows and columns of 𝐸 sum to 1 to

again aid in convergence. Given that the edge matrix is a variation

of the adjacency matrix, its final dimensions are 𝑁 × 𝑁 .

These two matrices are then fed into the network, specifically

into two stacked GNN layers. Together these layers generate a

new representation of the graph, which is then passed through a

flattening layer to reshape the representation in preparation for

concatenation with the processed circuit matrix. The GNN lay-

ers perform an edge-aware version of the forward computation

described in Equation 2:

𝑋 (𝑘 )
= 𝜎 (𝐸𝑋 (𝑘−1)𝑊 ) (2)

3.2 Circuit Representation and Processing

To provide the circuit information to the prediction network, we

first prepare a matrix containing hand-picked features to capture

the behavior of the circuit. After testing a variety of different com-

binations, our final decision of circuit features is shown in Table 2.

We believe that capturing the single-qubit operations each qubit,

the measurement status of each qubit, the count of CNOT opera-

tions and a set of CNOT partners for each qubit is sufficient for

most basic circuits. We provide results in Section 6 that show the

influence of different numbers of CNOT partners from each qubit,

though by default we only use the first CNOT partner. Currently,

this representation would likely fail to represent more complex

circuits involving mid-execution measurement and reset, though

these operations do not occur in any of our test circuits.

It is important to note that we do not use the original logical cir-

cuit to prepare these representations, as they may change through

the steps of the compilation process before preparing a layout. The

most important changes that can occur are decomposing multi-

qubit operations and sub-circuits and mapping to basis gates, as
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Table 2: List of all circuit features collected from test circuits.

These features are collected for every qubit in the circuit.

* Note that the number of CNOT operations we collect for

look-ahead is variable. We test look-ahead counts from 1 to

5. Default look-ahead is 1.

Feature Description

𝑁𝐼𝐷 Number of involved identity operations

𝑁𝑅𝑍 Number of involved RZ operations

𝑁𝑆𝑋 Number of involved SX operations

𝑁𝑋 Number of involved X operations

𝑁𝐶𝑁𝑂𝑇 Number of involved CNOT operations

𝑀 Measurement status

𝑇𝑖 𝑖𝑡ℎ target qubit for CNOT operations*

these can greatly change the view of which operations the circuit

performs. Instead, we acquire the intermediate circuit during the

compilation process at the point where qubit mapping normally

occurs, after these other operations. This allows us to represent the

circuit as accurately as possible for choosing a layout.

4 REINFORCEMENT LEARNING SETUP

4.1 Actions

When mapping the qubits, the available actions are simply one

placement action for each (𝑙𝑜𝑔𝑖𝑐𝑎𝑙, 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙) qubit pair. This place-
ment action represents assigning the logical qubit to the associated

physical qubit for the initial layout. To account for circuits with

fewer logical qubits than the available physical qubits, we extend

the logical qubits with ancilla qubits to equal the number of physical

qubits. In total, this results in 𝑁 2

𝑝ℎ𝑦𝑠
actions. This also characterizes

the total number of outcomes resulting from the final dense layer

in Fig. 3. Following an Epsilon-Greedy policy, with 𝜖 = 0.05, we se-

lect the action with the maximum predicted value with probability

1 − 𝜖 and a random action with probability 𝜖 to drive our training

decisions.

4.2 Environment

To define the environment, we first represent the state of the physi-

cal hardware and the circuit as described in Section 3 These inputs

are then complemented with a vector containing the current map-

ping of qubits, specifically mapping from 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 → 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 qubits.

This captures the current state of the layout, specifically a snapshot

of the current layout at a given time during compilation. The vector

is initialized to all zero values, indicating no qubits have been placed,

and gradually fills with non-zero values as placement actions are

taken each iteration. Together, the matrices and state vector capture

the problem as well as the current intermediate solution.

4.3 Rewards

When providing rewards, we first consider the placement of ancilla

qubits. As these qubits are not important to the execution of the

circuit, placing the qubits provides no reward. Similarly, when

attempting to place a qubit that has already been assigned to a

physical qubit, no reward is given. In contrast, placing a previously

Figure 4: GNAQC training process. (1) Data input. (2) Chosen

action. (3) Reward breakdown. (4) Output reward for training.

unplaced logical qubit provides a constant reward to encourage

prioritization.

The most interesting case is the reward given when completing

the mapping of all logical qubits. In this case, we first execute the

circuit on the simulator using the error profile of the backend. We

choose to use the simulator as we do not have dedicated access to a

physical backend for training. We then compare the output distribu-

tion to an error free output distribution that acts as our ground truth.

This error-free distribution is obtained by executing the circuit on

a simulator with no error simulation. This is effectively a theoreti-

cally perfect outcome for the circuit. To provide a tangible value,

we compute the Hellinger fidelity between the two distributions,

as shown in Equation 1. The more similar the output distributions

are, the closer this value approaches 1. This is then scaled by 100

and provided as the final reward. This guides GNAQC to target

configurations that are most similar to the error-free distribution.

4.4 Training

The full training process is shown in Fig. 4. First, the processed

edge, node, and circuit matrices are fed to the prediction network in

step (1). The network outputs a suggested action to take, namely a

qubit placement, in step (2). The reward for this action is calculated

in step (3), where the value for the reward depends on the result of

the action. If the action results in a fully-mapped circuit, we finish

compilation (routing and final optimization) and simulate the final

circuit in step (3B) using Qiskit’s Aer simulator. The simulator is

prepared with a noise model built on the error properties of the

collected backend under test. In step (3B), we collect the output

counts from the simulator and compute the fidelity with the ground

truth distribution. If the action did not result in a fully-mapped

circuit, we instead give either a reward of 0 if the qubit was already

placed or 10 if the qubit is newly placed. We use this reward for the

update process following the typical Q-learning update rule in step

(4).

5 DATA COLLECTION AND
EXPERIMENTATION

Throughout our experimentation, we rely on a set of various test

circuits at different sizes executed on several different physical back-

ends. We focus on a set of six different circuits as mentioned previ-

ously in Section 2 the Deutsch-Jozsa (DJ) algorithm, the Bernstein-

Vazirani (BV) algorithm, Simon’s algorithm, the quantum Fourier

transform (QFT), the quantum phase estimation (QPE) algorithm,
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Figure 5: Fidelity for all 5 layout methods, on all six bench-

marks, at various qubit sizes.

and Grover’s search algorithm. We prepare these circuits using 3

to 27 qubits. We believe that two qubits are simply too trivial, and

we are limited to backends with 7 or 27 maximum qubits.

For the backends, we collected calibrations for 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖 , a

7-qubit backend, and 𝑖𝑏𝑚_𝑎𝑙𝑔𝑖𝑒𝑟𝑠 , a 27-qubit backend. We selected

these two as a representative sample of the available 7-qubit and 27-

qubit machines that were available for experimentation. We chose

these sizes because they provide insight into both larger and smaller

scale quantum computers. We specifically collected the archived

daily calibrations from January 1st, 2022 through the end of May

2022. The backends vary in topology, with 𝑖𝑏𝑚_𝑛𝑎𝑖𝑟𝑜𝑏𝑖 having an

I shape and 𝑖𝑏𝑚_𝑎𝑙𝑔𝑖𝑒𝑟𝑠 having an adjusted square shape.

6 RESULTS

To evaluate the general performance of GNAQC, we predict layouts

for each test circuit using the most recent calibrations for the target

quantum machine. The circuits are then executed on the physical

backends to evaluate how GNAQC performs relative to the four

pre-existing methods within Qiskit. Our main metric is the fidelity

of the output compared to an error-free execution. These results

are shown in Fig. 5.

It can be observed that GNAQC generally outperforms the pre-

existing layouts for each benchmark at different algorithm sizes.

The GNAQC layouts consistently perform better on smaller algo-

rithms like DJ, BV, and Simon. We believe this is due to the length

of each algorithm, where shorter circuits are more influenced by

the initial position of qubits, while longer algorithms are more in-

fluenced by the routing methods. There is reduced improvement

on the larger algorithms. In the worse cases, GNAQC performs

comparably to the best alternative layout method. On average, we

see a relative improvement in fidelity of approximately 12.7%.

When examining by circuit size, the largest improvement is

found in smaller circuit sizes. We see the most variation in behavior

among the layouts at 3-5 qubits, with more consistent performance

among all five methods at larger sizes. We identify two main rea-

sons for this variation in behavior. First, as the depth of the circuit

increases due to the increased number of qubits, the fidelity de-

creases drastically. This results in less room for the layouts to vary

as the fidelity is simply so low. Second, we believe that this has

to do with the percentage of qubits used on the backend and the

topology of the machine itself. When using all of the qubits on the

machine, more SWAPs will likely need to be added to allow the

Figure 6: Compilation time for each of the layout methods.

Trivial not included due to 0 execution time.

circuit to function regardless of the initial position of qubits. At

smaller sizes, the number of added SWAPs may vary greatly based

on the initial position of qubits.

To evaluate the cost of GNAQC, we measure the execution time

of each layout method for QFT as shown in Fig. 6. GNAQC-onerun

is the time to perform a single inference stage, while GNAQC-total

is the total time to place all qubits (one inference iteration per qubit).

It is clear that GNAQC performs in-line with the other methods,

and scales better to larger qubit sizes than the sabre method.

7 CONCLUSION

We have proposed GNAQC, a new GNN-based neural network

architecture for improving the reliability of superconducting quan-

tum circuits by identifying more resilient layouts. We compare the

proposed layouts with the pre-existing layout methods contained

within Qiskit and find a mean 12.7% relative increase in fidelity

across both backends configurations with six different circuits. In

the future, we believe we could achieve even greater results by

expanding the work to include a routing method using recurrent

GNNs or experimenting with different feature representations.
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